
Random walks with power-law fluctuations in the number of steps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 8635

(http://iopscience.iop.org/0305-4470/35/41/301)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 02/06/2010 at 10:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 8635–8645 PII: S0305-4470(02)38609-8

Random walks with power-law fluctuations in the
number of steps

S V Annibaldi1 and K I Hopcraft2

1 Istituto Nazionale di Fisica della Materia, Dipartimento di Energetica, Politecnico di Torino,
Italy
2 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK

Received 24 June 2002, in final form 29 July 2002
Published 1 October 2002
Online at stacks.iop.org/JPhysA/35/8635

Abstract
In this paper we derive limiting distributions for the resultant of an anisotropic
random walk, where the individual steps comprising the walk are drawn from
distributions of arbitrary but finite variance, and where the number of steps
fluctuate according to a discrete power-law distribution. The consideration
of discrete distributions with power-law tails is motivated by their recently
discovered relevance to complex systems and networks. When this random
walk is unbiased, a power-law decay for large values of the amplitude of the
resultant occurs. For a small directional bias, the power-law tail persists only
in the direction parallel to the bias, exhibiting an exponential decay in all
other directions. We consider the relevance of the limiting distributions to
non-diffusive transport.

PACS numbers: 05.40.Fb, 02.50.Cw, 05.50.+q

1. Introduction

The random walk is concept of considerable utility and impact in the quantitative sciences. The
familiar central limit theorem of classical statistics [1] leads to Gaussian distributed variables
when forming sums of arbitrarily distributed random variates of finite variance. In this sense,
the Gaussian forms a limit distribution with a large basin of attraction. The Gaussian is a special
case of the stable or Lévy [2] distributions that, by direct analogy, are the attractors of those
distributions with infinite variance. Such distributions have been extensively used in recent
years as models for critical phenomena[3] and complex systems [4], and are natural descriptors
of scale-free random behaviour. Many situations require the consideration of random walks
where the number of steps in the walk is itself a fluctuating variable. In this case, attraction
to the Gaussian basin according to the tenets of the central limit theorem is not necessarily
obtained. For example, a random walk with negative binomial step number fluctuations leads
to the class of K-distributions [5], that has had considerable success in describing clutter in
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coherent imaging systems, among others. Likewise, when considering a random walk of stable
distributed random variables with fluctuating step number, the generalization of the central
limit theorem [6], does not necessarily lead to a stable distributed resultant. As demonstrated
in [7], a random walk with stable distributed step lengths having negative binomial fluctuations
in the number of steps obtains a class of infinitely divisible [1] distribution that can have two
power-law regimes: one at small scales that smoothly changes to another at large scales.

Sand-pile cellular automata [8] provide a particularly simple algorithmic means for
generating random behaviours that can be described by stable distributions. A particular
rice-pile simulation [9] enables individual grains to be traced. The distance that a grain
moves in an avalanche is approximately described by a stable distribution. This is, at first
consideration, a paradox, for it implies that a grain can experience a ‘flight’ of arbitrary length
which is apparently at variance with energetic constraints. Closer inspection reveals that the
Lévy flight of the particle comprises a number of sub-flights whose length is a random variable
with finite variance, but where the number of sub-flights fluctuate according to a distribution
with a power-law tail. Thus, the power-law tail of the flight-length distribution is inherited
from the number fluctuations rather than being a consequence of a classical Lévy flight. This
prompts the questions of how the dimensionality of the space in which the walk occurs affects
the form of the limiting distribution, and also what impact a bias in the walk has (grains move
in a downward direction). These are the issues that underpin the calculations performed in
this paper. The discrete power-law distributions are themselves a new discovery [9, 10], that
have a relevance to the study of complex networks such as the World Wide Web (WWW) in
addition to complex systems such as sand piles.

The analysis follows in the spirit of that adopted in [11], where a random walk was
considered in n dimensions having an arbitrary directional bias with negative binomial number
fluctuations, thereby obtaining a generalization of the K-distribution. Here, the number
fluctuations have a power-law tail, the moments for which do not exist; a fact that necessarily
leads to a different technical treatment to that adopted in [11], and to substantially different
results.

This paper is organized as follows. In section 2 we consider an isotropic random walk in
two dimensions, for clarity, and then we extend the study to more dimensions. In section 3
we do the same, introducing an anisotropy.

2. The isotropic random walk in two or more dimensions

The key tool for developing our theory is the characteristic function (CF), which is the Fourier
transform of the probability density function (PDF) p(R) of a random variable R that is a
vector with n components, where n is the dimension of the space, i.e.

c(u) =
∫

R
p(R) exp(iu · R) dR (1)

≡ 〈exp(iu · R)〉. (2)

The angled brackets denote an ensemble average. If c(u) is known, p(R) can be obtained by
Fourier inversion, namely

p(R) = 1

(2π)n

∫
u
c(u) exp(−iu · R) du. (3)

We consider random walks where the individual steps are statistically identical, but the
number of steps comprising the walk fluctuate with each realization. The characteristic
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function for such a walk with N steps is [c(u)]N for each realization of N. Averaging this
expression over the distribution for N obtains an average characteristic function, which we
denote as cN(u). The distribution of N with which we are exclusively concerned is the discrete
power law

p(N) = 1

ζ(β)Nβ
(4)

where ζ(β) is the Riemann Zeta function [12],

ζ(β) =
∞∑

k=1

k−β (5)

and provides the normalization, β > 1 is a real number and N � 1. This choice comes from
the behaviour of a sand-pile model [9], where N is the number of sub-flights that comprise a
total avalanche flight performed by one grain.

The average value of N is

N̄ ≡ 〈N〉 = 1

ζ(β)

∞∑
N=1

1

Nβ−1
= ζ(β − 1)

ζ(β)
(6)

and N̄ exists provided that β > 2.

2.1. Isotropic random walk in two dimensions

In two dimensions, we consider the random walk to take place in the complex plane, so that
the resultant vector R = ∑N

j=1 rj , where rj is the j th step, can be written as the complex
number

R ≡ R exp(iφ) =
N∑

j=1

rj exp(iϕj) (7)

where the step lengths rj are statistically similar and independent of each other, i.e.
〈rj rk〉 = 〈r2〉δjk , where δjk is the Kronecker symbol. The mean value of r is

〈r〉 =
∫ ∞

0
p(r)r dr. (8)

The phases ϕj are independent of rj , independent of each other and uniformly distributed over
2π , so that

p(ϕ) = 1

2π
0 � ϕ � 2π. (9)

2.1.1. Expression of the PDF for R. The PDF for R is found by Fourier inversion of the
characteristic function. This is best achieved by first writing rj , u and R as complex numbers,
whereupon

R · u = u

N∑
j=1

rj cos(ϕj + χ) (10)

and the CF of this N-step random walk is then

cN(u) =
〈

exp

[
iu

N∑
j=1

rj cos(ϕj + χ)

]〉

=
N∏

j=1

〈exp[iurj cos(ϕj + χ)]〉.
(11)
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Since each step is statistically similar and independent, it follows that

cN(u) = 〈exp [iur cos(ϕ + χ)]〉N . (12)

The CF of the single step is given by

c(u) = 〈exp [iur cos(ϕ + χ)]〉ϕ,r

=
∫ 2π

0
dϕ p(ϕ)

∫ ∞

0
dr p(r) exp [iur cos(ϕ + χ)] .

(13)

The average over the ϕ variable gives

〈exp [iur cos(ϕ + χ)]〉ϕ = J0(ur) (14)

where J0 is a Bessel function of the first kind [12, 13]. Thus, the CF of the single step is

c(u) = 〈J0(ur)〉r (15)

and it is finite because we have assumed that all the moments of the distribution of the step
lengths exist.

The CF for N steps is given by

cN(u) = 〈J0(ur)〉Nr (16)

so if we now let N fluctuate according to equation (4), the averaged CF is

cN(u) =
∞∑

N=1

1

ζ(β)Nβ
〈J0(ur)〉Nr (17)

or equivalently

cN(u) = 〈J0(ur)〉r
ζ(β)

∞∑
N=0

〈J0(ur)〉Nr
(N + 1)β

. (18)

The sum in equation (18) can be written exactly using a Lerch function � [13]

cN(u) = 〈J0(ur)〉r
ζ(β)

� (〈J0(ur)〉r , β, 1) (19)

and Fourier inversion of this expression obtains the PDF of R

pN̄(R) = 1

2πζ(β)

∫ ∞

0
uJ0(Ru)〈J0(ru)〉r�(〈J0(ru)〉r , β, 1) du. (20)

It is possible to rewrite the Lerch function using the expression

�(〈J0(ru)〉r , β, 1) = 1

	(β)

∫ ∞

0

tβ−1 dt

et − 〈J0(ru)〉r (21)

where 	 is the Gamma function. Upon interchanging the order of integration, the PDF then
becomes

pN̄(R) = 1

2πζ(β)	(β)

∫ ∞

0
dt e−t tβ−1

∫ ∞

0

J0(Ru)u du

〈J0(ru)〉−1
r − e−t

. (22)

This is a general result for the PDF of the resultant of a two-dimensional isotropic random
walk with power-law fluctuating step number and is valid provided the characteristic function
satisfies the condition

lim
u→∞〈J0(ru)〉 ∼ O(u−α) (23)

where α > 0.
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2.1.2. Asymptotics of the PDF. Examining the expression (22) for small u provides the
behaviour of the PDF for large R. Expanding the Bessel function for small u obtains [12]

〈J0(ru)〉r � 1 − 〈r2〉
4

u2 + O (〈r4〉u4) , (24)

whereupon the integral over the variable u appearing in equation (22) can be evaluated

I2(t, R) =
∫ ∞

0

J0(Ru)u du

〈J0(ru)〉−1
r − e−t

= 4

〈r2〉K0

([
4R2

〈r2〉 (1 − e−t )

]1/2
) (25)

where K0 is a modified Bessel function of the second kind, whence

pN̄(R) � 2

πζ(β)	(β)〈r2〉
∫ ∞

0
e−t tβ−1K0

([
4R2

〈r2〉 (1 − e−t )

]1/2
)

dt . (26)

Setting s2 = 4R2(1 − e−t )/〈r2〉 gives

F(R) =
∫ 2R/

√
〈r2〉

0

〈r2〉
2R2

[
− ln

(
1 − 〈r2〉

4R2
s2

)]β−1

K0(s)s ds (27)

and letting R → ∞ enables the logarithm to be expanded

F(R) = 〈r2〉
2R2

∫ ∞

0

( 〈r2〉
4R2

s2

)β−1

K0(s)s ds

= 〈r2〉β [	(β)]2

2

1

R2β
(28)

using [13]. The tail of the PDF therefore behaves as

pN̄(R) � 	(β)〈r2〉β−1

πζ(β)

1

R2β
R → ∞. (29)

We can see from this result that the PDF of the resultant of a two-dimensional random walk
where the individual step lengths have all finite moments can nevertheless have a power-law
tail, if the step number fluctuates with a power law. The index of the power-law tail is inherited
from the number fluctuations.

The tail of the distribution of the modulus of R is obtained by integrating over the
phase φ

pN̄(R) =
∫ 2π

0
pN̄ (R)R dφ (30)

and gives

pN̄(R) � 2	(β)〈r2〉β−1

ζ(β)

1

R2β−1
R → ∞. (31)

To evaluate the behaviour of the distribution for R 	 1, we expand the factor J0(Ru)

appearing in equation (22)

J0(Ru) � 1 − R2u2

4
(32)

whereupon to leading order in R

pN̄(R) = 1

2πζ(β)	(β)

∫ ∞

0
dt e−t tβ−1

∫ ∞

0

u du

〈J0(ru)〉−1
r − e−t

(33)
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which does not depend on R, so

pN̄(R) � C2 R → 0 (34)

where C2 is a constant. From equation (30), it follows that

pN̄(R) ∼ R R → 0. (35)

To summarize, the asymptotic behaviour of the PDF of the resultant of an isotropic two-
dimensional random walk where the step lengths have a regular PDF and the step number
fluctuates as a power law has the following properties:

pN̄(R) ∼ R−2β R →∞ (36)

pN̄(R) ∼ 1 R → 0 (37)

pN̄(R) ∼ R1−2β R →∞ (38)

pN̄(R) ∼ R R → 0. (39)

2.2. Isotropic random walk in n dimensions

The derivation of section 2.1 can be generalized to n dimensions, and we report here the
principal results. The CF of the single step is given by

c(u) =
(n

2
− 1

)
!

(
2

u

) n
2 −1 ∫ ∞

0

J n
2 −1(ur)

r
n
2 −1

p(r) dr (40)

where we have used∫
�n

d�n exp(iu · r) = (2π)
n
2

(ur)
n
2 −1

J n
2 −1(ur). (41)

The PDF of the resultant R of an isotropic n-dimensional random walk with regular PDF for
the step lengths and power-law PDF for the step number is then

pN̄(R) = 1

(2π)
n
2 R

n
2 −1ζ(β)	(β)

∫ ∞

0
dt e−t tβ−1

∫ ∞

0

u
n
2 J n

2 −1(Ru) du

[c(u)]−1 − e−t
(42)

which is valid for n � 2 provided the Hankel transform of the function u(n−1)/2[c(u)] [14]
exists. The one-dimensional random walk is qualitatively different because the random walker
can only move back and forth. This has been considered in [9].

The asymptotics of equation (42) can be determined:

pN̄(R) ∼ R−n−2β+2 R →∞ (43)

pN̄(R) ∼ 1 R → 0 (44)

pN̄(R) ∼ R1−2β R →∞ (45)

pN̄(R) ∼ Rn−1 R → 0. (46)

Note that for the vector R the power-law decay depends on the dimension of the space n � 2
and the index characterizing the number fluctuations β, whereas the magnitude of R depends
on β alone.

3. Random walk with directional bias

In this section, we determine the PDF of the resultant R of a random walk where the step
lengths r have a regular PDF, the step numbers have a power-law distribution (equation (4))
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and the steps and variables are all independent, as in the previous section. But this time the
PDF of the phase r̂ is not uniform: p(r̂) ≡ f (r̂), where f (r̂) measures a directional bias for
the steps comprising the random walk, as, for example, a confining magnetic field would do
for the particles in a plasma. We assume that f can be decomposed into two terms

f (r̂) = f0 + f1(r̂) (47)

where f0 is independent of the phase. We perform a first-order expansion in f1/f0, which is
equivalent to a perturbation analysis about the isotropic case.

3.1. Biased random walk in two dimensions

The details of the calculation are more intricate than before, therefore we provide details
for the more intelligible random walk in two dimensions and we quote the results for the
n-dimensional case.

3.1.1. Expression for the PDF of R. In two dimensions, assuming the same variables as in
section 2.1, we can write f (r̂) = f (ϕ) and, since f is a PDF, we can write the identity

1 =
∫ 2π

0
f (ϕ) dϕ (48)

= 2πf0 +
∫ 2π

0
f1(ϕ) dϕ (49)

so that

f (ϕ) = 1 + f1(ϕ)

2π
[
1 + 1

2π

∫ 2π

0 f1(ϕ) dϕ
] (50)

on transforming f1 → f1/f0. If we assume that β > 2, then N̄ exists, so we can rescale again
f1 → f1/N̄

1
2 , and expand the right-hand side of equation (50) for N̄ → ∞, to give

f (ϕ) � 1

2π

[
1 +

f1(ϕ)

N̄
1
2

− 1

2πN̄
1
2

∫ 2π

0
f1(ϕ) dϕ

]
. (51)

The CF of a single step in such a random walk is

c(u) = 〈exp(ir · u)〉 (52)

=
∫ ∞

0
p(r) dr

∫ 2π

0
exp(ir · u)f (ϕ) dϕ (53)

and, using equation (51), the integral over ϕ gives

〈exp(ir · u)〉ϕ =
∫ 2π

0
exp(ir · u)f (ϕ) dϕ

= J0(ur)

[
1 − 1

2πN̄
1
2

∫ 2π

0
f1(ϕ) dϕ

]
(54)

+
1

2πN̄
1
2

∫ 2π

0
exp(ir · u)f1(ϕ) dϕ.

We can now rescale r → r/N̄
1
2 and, assuming N̄ as large, expand the exponential

exp

(
ir · u

N̄
1
2

)
� 1 + i

r · u

N̄
1
2

− (r · u)2

2N̄
(55)
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so that〈
exp

(
ir · u

N̄
1
2

)〉
ϕ

� J0

(
ur

N̄
1
2

)[
1 − 1

2πN̄
1
2

∫ 2π

0
f1(ϕ) dϕ

]
+

1

2πN̄
1
2

∫ 2π

0
f1(ϕ) dϕ

+
i

2πN̄

∫ 2π

0
(r · u)f1(ϕ) dϕ. (56)

Expanding also the Bessel function for N̄ → ∞, we obtain the CF to O(1/N̄)

c(u) �
∫ ∞

0
p(r) dr

[
1 − r2u2

4N̄
+

i

2πN̄

∫ 2π

0
(r · u)f1(ϕ) dϕ

]
. (57)

We can rescale both f1 and r with N̄
1
2 and write the CF of the single step as

c(u) � 1 − 1
4u2〈r2〉 + i(u · δ) (58)

where

δ = 1

2π

∫ ∞

0
p(r) dr

∫ 2π

0
rf1(ϕ) dϕ (59)

which is a measure of the anisotropy of the random walk.
The derivation of the PDF is now the same as in section 2.1, and gives

pN̄(R) = 1

(2π)2

1

ζ(β)	(β)

∫ ∞

0
tβ−1 e−t dt

∫
u

exp(−iR · u) du
[c(u)]−1 − e−t

. (60)

The integral over the variable u will exist provided that it satisfies the conditions for the
existence of a Hankel transform [14]. Substituting for c(u), we obtain

pN̄(R) � 1

(2π)2

1

ζ(β)	(β)

∫ ∞

0
tβ−1 e−t dt

×
∫

u

exp(−iR · u) du

1 + 1
4u2〈r2〉 − i(u · δ) − e−t

. (61)

This is the general expression for the PDF of the resultant of a random walk where the step
lengths are drawn from a regular PDF, the step numbers are power-law distributed and there
is a directional bias whose effect is encapsulated in the parameter δ. We now evaluate the tail
of this PDF.

3.1.2. Asymptotics of the PDF. Consider the integral in u, appearing in equation (61), which
with a change of variable to v = u − 2iδ/〈r2〉 can be written as

B(R, t) = exp

(
2

〈r2〉R · δ

)∫
v

exp(−iR · v) dv

1 + δ2

〈r2〉 + 〈r2〉
4 v2 − e−t

= 8π

〈r2〉 exp

(
2

〈r2〉R · δ

)
K0

([
4R2

〈r2〉
(

1 +
δ2

〈r2〉 − e−t

)]1/2
)

.

(62)

Apart from a factor deriving from the angular integration, this can be compared with equation
(25).

We now have to evaluate the integral in t, which with substitution s = (1 + δ2/〈r2〉 −
e−t )〈r2〉/δ2 gives

D(R) = δ2

〈r2〉
∫ 1+ 〈r2〉

δ2

1

{
− ln

[
1 +

δ2

〈r2〉 (1 − s)

]}β−1

K0

(
2δR

〈r2〉
√

s

)
ds. (63)
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Figure 1. Contour plots of pN̄ (R), in the plane (R, φ), for β = 2.1 and different values of
δ; 〈r2〉 = 1 for all the graphics and there are 50 equally spaced equiprobability lines between 0
and 0.1 in each plot.

If we consider the limit δ2/〈r2〉 	 1, we can expand the logarithm in δ2/〈r2〉 and replace the
upper limit of integration by infinity:

D(R) �
(

δ2

〈r2〉
)β ∫ ∞

1
(1 − s)β−1K0

(
2δR

〈r2〉
√

s

)
ds

= 	(β)

(
δ

R

)β

Kβ

(
2δR

〈r2〉
)

. (64)

For large values of R, the expression of the PDF for R is

pN̄(R) � 2

πζ(β)〈r2〉
(

δ

R

)β

Kβ

(
2δR

〈r2〉
)

exp

(
2

〈r2〉R · δ

)
. (65)

Notice that, if we let δ → 0, we obtain the isotropic result equation (29). We can expand the
Bessel function for R → ∞, and obtain

pN̄(R) � 2

πζ(β)〈r2〉
(

δ

R

)β

√
π〈r2〉
4δR

exp

(
−2Rδ

〈r2〉
)

exp

(
2

〈r2〉R · δ

)
. (66)

So the tail of the distribution behaves as

pN̄(R) � δβ− 1
2√

π〈r2〉ζ(β)

1

Rβ+ 1
2

exp

[
−2δR

〈r2〉 (1 − cos θ)

]
(67)

where θ is the angle between R and δ and is equivalent to the mean direction in which the
bias is directed. This PDF behaves as an exponential for large values of R for all θ , except
for θ = 0 where it has a power-law tail. Thus, for those directions where R is parallel to δ,
the PDF has a power-law tail. For all other directions, the PDF has a multiplicative negative
exponential dependence with a characteristic scale length 〈r2〉/(2δ). Hence, moments of R
will exist in all those directions other than those where R is parallel to δ.

Figure 1 shows the contour plots in the plane (R, φ) of pN̄(R) for β = 2.1 and different
values of δ, with 〈r2〉 = 1. These are calculated numerically using equation (61) and assuming,
without loss of generality, that δ ≡ δφ̂. We clearly see that when δ increases, keeping
δ2/〈r2〉 	 1, the contours become more distorted in the direction of φ̂ with increasing R.

The tail of the PDF for R can be evaluated

pN̄(R) �
∫ 2π

0
R dφ

2

πζ(β)〈r2〉
(

δ

R

)β

Kβ

(
2δR

〈r2〉
)

exp

(
2

〈r2〉R · δ

)
(68)
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and, using ∫ 2π

0
exp

(
2

〈r2〉R · δ

)
dφ = 2πJ0

(
2i

〈r2〉Rδ

)

= 2πI0

(
2

〈r2〉Rδ

) (69)

where I0 is a modified Bessel function of the first kind, we obtain

pN̄(R) � 4δβ

ζ(β)〈r2〉
1

Rβ−1
Kβ

(
2δR

〈r2〉
)

I0

(
2δR

〈r2〉
)

. (70)

Note that the result of equation (31) obtains as the biasing δ → 0.

3.2. Biased random walk in n dimensions

Finally we give the asymptotic results for the PDF of the resultant of an n-dimensional random
walk where the step lengths have a regular PDF, the step numbers are power-law distributed
and there is a directional bias.

When R → ∞, the PDF of the resultant of an n-dimensional random walk with a
directional bias is

pN̄(R) � 2δ
n
2 +β−1
n

ζ(β)

(
n

2π〈r2〉
) n

2 exp
(

n
〈r2〉δn · R

)
R

n
2 +β−1

Kn
2 +β−1

(
nδn

〈r2〉R
)

. (71)

Expanding the Bessel function for R → ∞, we obtain:

pN̄(R) � 2δ
n
2 +β− 3

2
n

ζ(β)

(
2n

π〈r2〉
) n

2 − 1
2 1

R
n
2 +β− 1

2

exp

[
−nδnR

〈r2〉 (1 − cos θ)

]
(72)

where δn is the n-dimensional generalization of δ defined in equation (59) and θ is the angle
between δn and R. As in the two-dimensional biased case, the PDF has an exponential tail
except for the direction parallel to the the bias, where it has a power-law decay.

4. Conclusions

In this paper, we have examined the effect of anisotropy or bias on random walks in an arbitrary
dimension formed from step lengths of arbitrary distribution but finite variance, but where the
number of steps fluctuate according to an inverse power law. The limiting distributions are
manifestly not of the stable class, even though they possess the characteristic power-law tails
in the direction approximately parallel to the bias. In contrast, in the direction orthogonal to
the bias, the distribution has an exponential tail. Such behaviour is reminiscent of the diffusion
of particles in a confining magnetic field, where motion parallel and perpendicular to the field
direction exhibits very different behaviour and properties. Indeed, the transport of particles
and energy throughout the complex field structures within a magnetic confinement device is
known to be anomalous and can exhibit avalanching phenomenology (see [15] and references
therein and [16, 17]), and the distributions derived here may have an impact in this regard.
The distributions provide a single-fold description of the fluctuations, but do not describe how
such fluctuations evolve.

The fundamental and independent question of how discrete power-law distributions can
arise from a dynamical or stochastic process is under active consideration [18]. A solution
of this problem would provide the tools required for studying the spatio-temporal evolution,
for instance, of an initially coherent ensemble of particles subject to directionally dependent
scale-free fluctuations.
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